
Optimal Transport and Wasserstein Distance

The Wasserstein distance — which arises from the idea of optimal transport — is being used
more and more in Statistics and Machine Learning. In these notes we review some of the
basics about this topic. Two good references for this topic are:

Kolouri, Soheil, et al. Optimal Mass Transport: Signal processing and machine-learning
applications. IEEE Signal Processing Magazine 34.4 (2017): 43-59.

Villani, Cedric. Topics in optimal transportation. No. 58. American Mathematical Soc.,
2003.

As usual, you can find a wealth of information on the web.

1 Introduction

Let X ∼ P and Y ∼ Q and let the densities be p and q. We assume that X, Y ∈ Rd. We
have already seen that there are many ways to define a distance between P and Q such as:

Total Variation : sup
A
|P (A)−Q(A)| = 1

2

∫
|p− q|

Hellinger :

√∫
(
√
p−√q)2

L2 :

∫
(p− q)2

χ2 :

∫
(p− q)2

q
.

These distances are all useful, but they have some drawbacks:

1. We cannot use them to compare P and Q when one is discrete and the other is con-
tinuous. For example, suppose that P is uniform on [0, 1] and that Q is uniform on
the finite set {0, 1/N, 2/N, . . . , 1}. Practically speaking, there is little difference be-
tween these distributions. But the total variation distance is 1 (which is the largest
the distance can be). The Wasserstein distance is 1/N which seems quite reasonable.

2. These distances ignore the underlying geometry of the space. To see this consider
Figure 1. In this figure we see three densities p1, p2, p3. It is easy to see that

∫
|p1−p2| =∫

|p1 − p3| =
∫
|p2 − p3| and similarly for the other distances. But our intuition tells

us that p1 and p2 are close together. We shall see that this is captured by Wasserstein
distance.
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Figure 1: Three densities p1, p2, p3. Each pair has the same distance in L1, L2, Hellinger
etc. But in Wasserstein distance, p1 and p2 are close.

3. When we average different objects — such as distributions or images — we would like
to make sure that we get back a similar object. The top plot in Figure 2 shows some
distributions, each of which is uniform on a circle. The bottom left plot shows the
Euclidean average of the distributions which is just a gray mess. The bottom right
shows the Wasserstein barycenter (which we will define later) which is a much better
summary of the set of images.

4. When we compute the usual distance between two distributions, we get a number but
we don’t get any qualitative information about why the distributions differ. But with
the Wasserstein distance we also get a map that shows us how we have to move the
mass of P to morph it into Q.

5. Suppose we want to create a path of distributions (a geodesic) Pt that interpolates
between two distributions P0 and P1. We would like the distributions Pt to preserve
the basic structure of the distributions. Figure 5 shows an example. The top row
shows the path between P0 and P1 using Wasserstein distance. The bottom row shows
the path using L2 distance. We see that the Wasserstein path does a better job of
preserving the structure.

6. Some of these distances are sensitive to small wiggles in the distribution. But we shall
see that the Wasserstein distance is insensitive to small wiggles. For example if P is
uniform on [0, 1] and Q has density 1+sin(2πkx) on [0, 1] then the Wasserstein distance
is O(1/k).

2 Optimal Transport

If T : Rd → Rd then the the distribution of T (X) is called the push-forward of P , denoted
by T#P . In other words,

T#P (A) = P
(
{x : T (x) ∈ A

)
= P (T−1(A)).
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Figure 2: Top: Some random circles. Bottom left: Euclidean average of the circles. Bottom
right: Wasserstein barycenter.

The Monge version of the optimal transport distance is

inf
T

∫
||x− T (x)||pdP (x)

where the infimum is over all T such that T#P = Q. Intuitively, this measures how far you
have to move the mass of P to turn it into Q. A minimizer T ∗, if one exists, is called the
optimal transport map.

If P and Q both have densities than T ∗ exists. The map Tt(x) = (1− t)x+ tT ∗(x) gives the
path of a particle of mass at x. Also, Pt = Tt#P is the geodesic connecting P to Q.

But, the minimizer might not exist. Consider P = δ0 and Q = (1/2)δ−1 + (1/2)δ1 where
δa. In this case, there is no map T such that T#P = Q. This leads us to the Kantorovich
formulation where we allow the mass at x to be split and move to more than one location.

Let J (P,Q) denote all joint distributions J for (X, Y ) that have marginals P and Q. In
other words, TX#J = P and TY#J = Q where TX(x, y) = x and TY (x, y) = y. Figure 4
shows an example of a joint distribution with two given marginal distributions. Then the
Kantorovich, or Wasserstein, distance is

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
||x− y||pdJ(x, y)

)1/p
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Figure 3: Two densities p and q and the optimal transport map to that morphs p into q.

where p ≥ 1. When p = 1 this is also called the Earth Mover distance. The minimizer J∗

(which does exist) is called the optimal transport plan or the optimal coupling. In case there
is an optimal transport map T then J is a singular measure with all its mass on the set
{(x, T (x))}.

It can be shown that

W p
p (P,Q) = sup

ψ,φ

∫
ψ(y)dQ(y)−

∫
φ(x)dP (x)

where ψ(y) − φ(x) ≤ ||x − y||p. This is called the dual formulation. In special case where
p = 1 we have the very simple representation

W1(P,Q) = sup

{∫
f(x)dP (x)−

∫
f(x)dQ(x) : f ∈ F

}

where F denotes all maps from Rd to R such that |f(y)− f(x)| ≤ ||x− y|| for all x, y.

When d = 1, the distance has a closed form:

Wp(P,Q) =

(∫ 1

0

|F−1(z)−G−1(z)|p
)1/p
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Figure 4: This plot shows one joint distribution J with a given X marginal and a given Y
marginal. Generally, there are many such joint distributions. Image credit: Wikipedia.

and F and G are the cdf’s of P and Q. If P is the empirical distribution of a dataset
X1, . . . , Xn and Q is the empirical distribution of another dataset Y1, . . . , Yn of the same
size, then the distance takes a very simple function of the order statistics:

Wp(P,Q) =

(
n∑
i=1

||X(i) − Y(i)||p
)1/p

.

An interesting special case occurs for Normal distributions. If P = N(µ1,Σ1) and Q =
N(µ2,Σ2) then

W 2(P,Q) = ||µ1 − µ2||2 +B2(Σ1,Σ2)

where
B2(Σ1,Σ2) = tr(Σ1) + tr(Σ2)− 2tr

[
(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
.

There is a connection between Wasserstein distance and L1 distance (Indyk and Thaper
2003). Suppose that P and Q are supported on [0, 1]d. Let G1, G2, . . . be a dyadic sequence
of cubic partitions where each cube in Gi has side length 1/2i. Let p(i) and q(i) be the
multinomials from P and Q one grid Gi. Fix ε > 0 and let k = log(2d/ε). Then

W1(P,Q) ≤ 2d
m∑
i=1

1

2i
||p(i) − q(i)||1 +

ε

2
. (1)
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Figure 5: Top row: Geodesic path from P0 to P1. Bottom row: Euclidean path from P0 to
P1.

There is an almost matching lower bound (but it actually requires using a random grid).

More generally, as discussed in Weed and Bach (2017), for any sequence of dyadic partitions
A1,A2, . . . ,Am we have

W p
p (P,Q) ≤ δmp +

m∑
j=1

δ(j−1)p
∑
A∈Aj

|P (A)−Q(A)|

where diam(A) ≤ δj for every A ∈ Aj.

These results show that, in some sense, Wasserstein distance is like a multiresolution L1

distance.

3 Geodesics

Let P0 and P1 be two distributions. Consider a map c taking [0, 1] to the set of distributions,
such that c(0) = P0 and c(1) = P1. Thus (Pt : 0 ≤ t ≤ 1) is a path connecting P0

and P1, where Pt = c(t). The length of c — denoted by L(c) — is the supremum of∑m
i=1Wp(c(ti−1), c(ti)) over all m and all 0 = t1 < · · · < tm = 1. There exists such a path c

such that L(c) = W (P0, P1). In other words, (Pt : 0 ≤ t ≤ 1) is the geodesic connecting P0

and P1. It can be shown that
Pt = Ft#J

where J is the optimal coupling and Ft(x, y) = (1− t)x+ ty. Examples are shown in Figures
5 and 6.
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Figure 6: Morphing one image into another using the Wasserstein geodesic. Image credit:
Bauer, Joshi and Modin 2015.

4 Barycenters and PCA

Suppose we have a set of distributions P1, . . . , PN . How do we summarize these distributions
with one “typical” distribution? We could take the average 1

N

∑n
j=1 Pj. But the resulting

average won’t look like any of the Pj’s. See Figure 7.

Instead we can use the Wasserstein barycenter which is the distribution P that minimizes

N∑
j=1

W (P, Pj).

The bottom right plot of Figure 7 shows an example. You can see that this does a much
better job.

We can do the same thing for data sets. See Figure 8. Here we simple regard a dataset as
an empirical distribution. The average (red dots) N−1

∑
j P̂j of these empirical distributions

P̂j is useless. But the Wasserstein barycenter (blue dots) gives us a better sense of what a
typical dataset looks like.

Let’s pursue this last example a bit more since it will give us some intuition. Suppose we
have N datasets X1, . . . ,XN where Xj = {Xj1, . . . , Xjn}. For simplicity, suppose that each
is of the same size n. In this case, we can describe the Wasserstein barycenter in a simple
way. First we find the order statistics for each data set:

X(j1) ≤ X(j2) ≤ · · · ≤ X(jn).

Now for each 1 ≤ r ≤ n, we find the average rth average order statistic:

Y(r) =
1

N

N∑
j=1

X(jr).

Then Y = {Y(1), . . . , Y(n)} is the Wasserstein barycenter. In a sense, all we are really doing
is converting to quantiles and averaging.
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Figure 7: Top: Five distributions. Bottom left: Euclidean average of the distributions.
Bottom right: Wasserstein barycenter.
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Figure 8: The top five lines show five, one-dimensional datasets. The red points the what
happens if we simple average the give empirical distributions. The blue dots show the Wasser-
stein barycenter which, in this case, can be obtained simply by averaging the order statistics.
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If Pj = N(µj,Σj) for j = 1, . . . , N then the Barycenter is N(µ,Σ) where µ = N−1
∑

j µj
and Σ satisfies

1

N

∑
j

(Σ1/2ΣjΣ
1/2)1/2.

Now that we have a notion of average, it is possible to define a Wasserstein version of PCA.
There are several approaches; see, for example Seguy and Cuturi (2015), Boissard et al
(2013), Bigot (2014), Wang, Wei and Slepcev (2013). The idea, as with the barycenters,
is to find orthogonal directions of variation in the space of measures (or images). Here I’ll
briefly describe the method from Wang, Wei and Slepcev (2013).

Let P1, . . . , PN be distributions with densities. Let R be a reference distribution with density
r. Define ψj(x) = (Tj(x)−x)

√
r(x). The set of distributions endowed with the W 2 distance

is a manifold and
∫

(ψj(x) − ψk(x))2dx is the distance between the projections onto the
tangent space at R. In other words, ψj defines an approximate embedding of the set of
distributions and L2. We can now perform PCA on the functions ψ1, . . . , ψN .

5 Minimax Rates

Equation (1) can be used to compute rates of convergence. Suppose that the sample space
is [0, 1]d. The minimax rate is (ignoring log factors)

εn �

{
n−1/(2p) p ≥ d/2

n−1/d p < d/2.

The optimal estimator is the empirical distribution. This is a nice property about Wasser-
stein: there is no need to smooth.

Now suppose we observe X1, . . . , Xn ∼ P supported on [0,∆]d. We want to test H0 : P = P0

versus H1 : W1(P, P0) > ε. Ba et al (2013) and Deng, Li and Wu (2017) showed that the
minimax separation rate is (ignoring some log terms)

εn �
2∆d

n
3
2d

.

In the special case were P and P0 are concentrated in k small clusters, the rate becomes

εn � d∆

(
k

n

)1/4

.
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6 Confidence Intervals

How do we get hypothesis tests and confidence intervals for the Wasserstein distance? Usu-
ally, we would use some sort of central limit theorem. Such results are available when d = 1
but are elusive in general.

del Barrio and Loubes (2017) show that

√
n(W 2

2 (P, Pn)− E[W 2
2 (P, Pn)]) N(0, σ2(P ))

for some σ2(P ). And, in the two sample case√
nm

n+m

(
W 2

2 (Pn, Qm)− E[W 2
2 (Pn, Qm)]

)
 N(0, σ2(P,Q))

for some σ2(P,Q). Unfortunately, these results do not give a confidence interval for W (P,Q)
since the limit is centered around E[W 2

2 (Pn, Qm)] instead of W 2
2 (P,Q). However, del Barrio,

Gordaliza and Loubes (2018) show that if some smoothness assumptions holds, then the
distribution centers around W 2

2 (P,Q). More generally, Tudor, Siva and Larry have a finite
sample confidence interval for W (P,Q) without any conditions.

All this is for d = 1. The case d > 1 seems to be unsolved.

Another interesting case is when the support X = {x1, . . . , xk} is a finite metric space. In
this case, Sommerfeld and Munk (2017) obtained some precise results. First, they showed
that (

nm

n+m

) 1
2p

Wp(Pn, Qm) 
(

max
u
〈G, u〉

)1/p
G is a mean 0 Gaussian random vector and u varies over a convex set. By itself, this does
not yield a confidence set. But they showed that the distribution can be approximated by
subsampling, where the subsamples of size m with m→∞ and m = o(n).

You might wonder why the usual bootstrap does not work. The reason is that the map
(P,Q) 7→ W p

p (P,Q) is not Hadamard differentiable. This means that the map does not
have smooth derivatives. In general, the problem of constructing confidence intervals for
Wasserstein distance is unsolved.

7 Robustness

One problem with the Wasserstein distance is that it is not robust. To see this, note that
W (P, (1− ε)P + εδx)→∞ as x→∞.
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However, a partial solution to the robustness problem is available due to Alvarez-Esteban,
del Barrio, Cuesta Albertos and Matran (2008). They define the α-trimmed Wasserstein
distance

τ(P,Q) = inf
A
W2(PA, QA)

where PA(·) = P (A
⋂
·)/P (A), QA(·) = Q(A

⋂
·)/Q(A) and A varies over all sets such that

P (A) ≥ 1− α and Q(A) ≥ 1− α. When d = 1, they show that

τ(P,Q) = inf
A

(
1

1− α

∫
A

(F−1(t)−G−1(t))2dt
)1/2

where A varies over all sets with Lebesgue measure 1− α.

8 Inference From Simulations

Suppose we have a parametric model (Pθ : θ ∈ Θ). We can estimate θ using the likelihood
function

∏
i pθ(Xi). But in some cases we cannot actually evaluate pθ. Instead, we can

simulate from Pθ. This happens quite often, for example, in astronomy and climate science.
Berntom et al (2017) suggest replacing maximum likelihood with minimum Wasserstein
distance. That is, given data X1, . . . , Xn we use

θ̂ = argmin
θ

W (Pθ, Pn)

where Pn is the ampirical measure. We estimate W (Pθ, Pn) by W (QN , Pn) where QN is the
empirical measure based on a sample Z1, . . . , ZN ∼ Pθ.

9 Computing the Distance

We saw that, when d = 1,

Wp(P,Q) =

(∫ 1

0

|F−1(z)−G−1(z)|p
)1/p

and F and G are the cdf’s of P and Q. If P is the empirical distribution of a dataset
X1, . . . , Xn and Q is the empirical distribution of another dataset Y1, . . . , Yn of the same
size, then the distance takes a very simple function of the order statistics:

Wp(P,Q) =

(
n∑
i=1

||X(i) − Y(i)||p
)1/p

.
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The one dimensional case is, perhaps, the only case where computing W is easy.

For any d, if P and Q are empirical distributions — each based on n observations — then

Wp(P,Q) = inf
π

(∑
i

||Xi − Yπ(i)||p
)1/p

where the infimum is over all permutations π. This may be solved in O(n3) time using the
Hungarian algorithm.

Suppose that P has density p and that Q =
∑m

j=1 qjδyj is discrete. Given weights w =
(w1, . . . , wm) define the power diagram V1, . . . , Vm where y ∈ Vj if y is closer to the ball
B(yj, wj) and any other ball B(ys, ws). Define the map T (x) = yj when x ∈ Vj. According
to a result known as Bernier’s theorem, if have that P (Vj) = qj then

W2(P,Q) =

(∑
j

∫
Vj

||x− yj||2dP (x)

)1/2

.

The problem is: how do we choose w is that we end up with P (Vj) = qj? It was shown by
Aurenhammer, Hoffmann, Aronov (1998) that this corresponds to minimizing

F (w) =
∑
j

(
qjwj −

∫
Vj

[||x− yj||2 − wj]dP (x)

)
.

Merigot (2011) gives a multiscale method to minimize F (w).

There are a few papers (Merigot 2011 and Gerber and Maggioni 2017) use multiscale methods
for computing the distance. These approaches make use of decompositions like those used
for the minimax theory.

Cuturi (2013) showed that if we replace inf E||x − y||pdJ(x, y) with the regularized version
inf E||x − y||pdJ(x, y) +

∫
j(x, y) log j(x, y) then a minimizer can be found using a fast,

iterative algorithm called the Sinkhorn algorithm. However, this requires discretizing the
space and it changes the metric.

Finally, recall that, if P = N(µ1,Σ1) and Q = N(µ2,Σ2) then

W 2(P,Q) = ||µ1 − µ2||2 +B2(Σ1,Σ2)

where
B2(Σ1,Σ2) = tr(Σ1) + tr(Σ2)− 2tr

[
(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
.

Clearly computing the distance is easy in this case.
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10 Applications

The Wasserstein distance is now being used for many tasks in statistical machine learning
including:

• Two-sample testing without smoothness

• goodness-of-fit

• analysis of mixture models

• image processing

• dimension reduction

• generative adversarial networks

• domain adaptation

• signal processing

The domain adaptation application is very intriguing. Suppose we have two data sets D1 =
{(X1, Y1), . . . , (Xn, Yn)} and D2 = {(X ′1, Y ′1), . . . , (X ′N , Y

′
N)} from two related problems. We

want to construct a predictor for the first problem. We could use just D1. But if we can
find a transport map T that makes D2 similar to D1, then we can apply the map to D2 and
effectively increase the sample size for problem 1. This kind of reasoning can be used for
many statistical tasks.

11 Summary

Wasserstein distance has many nice properties and has become popular in statistics and ma-
chine learning. Recently, for example, it has been used for Generative Adversarial Networks
(GANs).

But the distance does have problems. First, it is hard to compute. Second, as we have
seen, we do not have a way to do inference for the distance. This reflects the fact that the
distance is not a smooth functional which is, itself not a good thing. We have also seen that
the distance is not robust although, the trimmed version may fix this.

13


